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Abstract. In modeling the equation of state of solids in the cases where the region of interest is several orders of 
magnitude of pressure and temperature, it is standard to divide the problem into three contributions: the zero 
temperature (cold) isotherm, the contribution of thermal vibrations of ions, and the conduction electron thermal excitation 
contribution. 
In this paper we consider only the first one. We derive a differential equation for the cold isotherm and solve it in 
quadratures. It is based on the Mie-Grüneisen equation and uses the shock Hugoniot as a reference curve. The quantum 
zero vibrations of the crystal lattice are obtained within the frame work of the Debye model. The solution is expressed in 
terms of the integral exponential function. 

I. Introduction 
The study of shock-wave propagation in solids has added significantly to our understanding of physical 
processes which take place at high pressures, high temperatures and very short times. One particular aspect 
of these studies is to determine the  equations of state (EOS) for different materials from shock-wave data. 
Shock-wave experiments, aimed at EOS investigations, render it possible to extend the range of pressure-
volume data beyond the region that can be reached with conventional static pressure experiments. 

In modeling the equation of state of solids in the cases where the region of interest is several orders of 
magnitude of pressure and temperature, it is standard to divide the problem into three contributions: the zero 
temperature (cold) isotherm, the contribution of thermal vibrations of ions, and the conduction electron 
thermal excitation contribution. 

In this paper we consider only the first one. We derive a differential equation for the cold isotherm and solve 
it in quadratures. It is based on the Mie-Grüneisen equation and uses the shock Hugoniot as a reference 
curve. The solution is expressed in terms of the integral exponential function. The quantum zero vibrations of 
the crystal lattice are obtained within the framework of the Debye model. 

II. Semi-empirical calculations of the zero temperature isotherm 
Analytic semi-empirical expressions for the computation of the cold compression curve have been mainly 
employed in earlier years to extend experimental EOS data to regimes not accessible to experimentation. 
The basic ingradient of these representations has been volume-dependent pair potential with terms 
representing repulsive and attractive atomic interactions. The parameters in these were fitted either to some 
experimental data or some theory. For the ionic, rare gas and molecular materials, the two-body Lennard-
Jones or Born-Mayer forms of the potential energy curve has often been employed. A good example of such 
an approach is that of Ross [1] for Ar , through the use of exponential-six potential with constants 
reproducing the results of molecular beam experiments. For alkali halides Boyer [2] used exponential pair 
potential with constants for kinetic, exchange and correlation contributions determined from fits to Hartree-
Fock calculations and predicted with good accuracy a host of properies (lattice dynamics,  curves, 
thermal expansion and the overall stability of the lattice as a function of temperature and pressure). 

VP −

For metallic solids, as no agreed theoretical analytical form for the potential energy has been known, there 
has been a plethora of expressions. The most popular expression is the second order Birch-Murnaghan 
equation [3]: 
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where  is the initial bulk modulus, 
0TK pKK TT d/d=′  and 0/= ρρη . The validity of this equation for 

extrapolation purposes has been examined by Jamieson [4]. Fisher  et al. [5] have used this equation to fit 
 isotherms derived from shock data and the K 0 TK ′  values so derived agree quite with those from 

ultrasonic data. 

In the present work a potential-free method is elaborated to obtain the zero temperature isotherm from 
shock-wave experiments. It is applicable to materials with all types of chemical bond. The detailed derivation 
is given in the next section. 
 

III. Calculation of the zero-degree Kelvin isotherm 
 

III. 1. General formulation 
 

A thermodynamically complete EOS is defined by one of the thermodynamic potentials expressed as a 
function of its characteristic variables. In the case of the Helmholtz free energy we have  

(2)   ).,(= TVFF
It is clear that  depends on the microscopic structure of the solid under consideration, which would vary as 
a function of volume and temperature. At different temperatures and densities, the corresponding region of 
matter will be dominated by different interactions. In view of the above, we may write the free energy as a 
superposition of terms appropriate to various physical interactions (Grüneisen’s assumption [6])  

F

(3)   ).,(),()(=),( TVFTVFVFTVF evibc ++

Here  is the configurational free energy at 0 K.  corresponds to the contribution of the zero and 

thermal vibrations of the ions of the crystal lattice.  is the conduction electrons thermal excitations 
contribution. 

 may be neglected in the phonon region and Eq.

cF vibF

eF

eF (3) takes the form  

(4) ),,()()(=),( 0 TVFVFVFTVF lTc ++   

where  is the quantum zero-degree contribution. It is a function of volume only like the configurational 

term.  is the thermal lattice contribution. 
0F

lTF

From the relation  and the fundamental thermodynamic identity  it follows 
that at   

TSEF −= STVPE dd=d +−
KT 0=

(5) .d/d=d/d=a= VEVFPndEF ccccc −−   

The specific form of the second of Eqs.(5) will be derived from the Mie—Grüneisen equation using the shock 
Hugoniot as a reference curve. Actually it is a first-order ordinary differential equation (ODE) for  (e.g for 

). 
cE

cF

The calculation of Helmholtz free energy components  and  will be performed within the 
framework of the Debye model for the specific heats. 

)(0 VF ),( TVFlT

 
III. 2.  Deriving the zero-degree Kelvin isotherm from shock-wave data 

 

The shock-wave methods for deriving the cold isotherm are based on the measurement of the Hugoniot 
curve. The quantities directly measured are the kinematic parameters of the shock wave—the shock front 
velocity  u s  and the particle velocity in the compressed region  u p  . The relation ( ) is the shock 
Hugoniot. Most substances in the absence of phase transitions have a linear shock Hugoniot [7]  

su pu
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in a wide range of particle velocities. The Hugoniot intercept, , and the slope, , are determined from the 
data by the method of least squares. If rigidity effects and possible low pressure phase changes are 
neglected, the intercept should correspond to the velocity of an infinitesimal pressure pulse, or the bulk 
sound speed,  
c  =  (at  P = 0). Since the slope is linearly related to the pressure derivative of the adiabatic 

bulk modulus, (  B/  P) , a linear --  Hugoniot then reflects a nearly linear dependence of  on 
the pressu
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The transition from kinematic (  , ) to thermodynamic (su pu P , V , E ) variables is done using the laws of 
conservation of mass, momentum and energy across the shock front [8]  
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Here  E,  P and ρ  are the specific internal energy, the pressure and the density behind the shock front, and  

E ,  P , 0 0 0ρ  are the values of these quantities ahead of the shock front. From Eqs.(7) and (8) we obtain  
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Solving Eqs.(10) and (11) for P  gives  
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Equations (12) give the relationship between the kinematic variables  u  ,  u  and the thermodynamic 
variables  P and  V. 

s p

Substituting with the right-hand sides of Eqs.(10)-(11) in Eq.(9) gives the Hugoniot equation of energy  
(13)   )/2.)((= 000 VVPPEE −+−
that defines all states on the ( E-P-V) surface that can be reached from an initial state ( E 0 ,  P , V ) by a 
single shock. 

0 0

If the linear --  relation holds, the Rankin-Hugoniot equations (su pu (12)) and ((13)) can be used to express 
pressure and energy as functions of volume along the Hugoniot by the following convenient analytic 
expressions (with  P 0  and  E  taken to be zero at ambient conditions)  0
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Equations (14) - (15) and the values of  c  and  s summarize all the experimental thermodynamic 
information which is available from shock-wave measurements. 

0
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To compute the cold compression curve we shall employ the Mie-Grüneisen equation [7] in the form  

(17) [ ],,0)(),()(=,0)(),( VETVE
V
VVPTVP −−

γ
  

where γ (V ) is the Grüneisen parameter. Equations (14), (15) give the pressure  P  and the specific 

internal energy  E  on the shock Hugoniot. Since it connects equilibrium thermodynamic states we can write  
H

H
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We shall assume that γ  is a function only of volume and, specifically, that the product ργ  is constant. 
Experimental work on a number of materials [9], as well as theoretical considerations [10], indicate this to be 
an adequate approximation. With this assumption, γ (V ) is given by  

(19) ,/=)/( 00 VVV γγ   

where 0γ  is the thermodynamic value at ambient conditions given by , pCc /3= 2
00 αγ α  is the thermal 

expansion coefficient,  c  --- the sound speed, and  C  --- the specific heat at constant pressure. 0 p

At  KT 0= EF =  and from Eqs.(5) it follows  
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If we substitute with Eqs.(14),  (15),  (20) in the left-hand side of Eq. (18), we obtain a differential equation for 
the zero Kelvin isotherm of the specific internal energy ,0)(=)( εε EEc :  
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with the initial condition  
.=0)=( 0cc EE ε  

This is a first order linear inhomogeneous ordinary differential equation. Its general solution is 
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where  is an arbitrary constant determined from the initial condition. The integral in Eq.C (22) could be 
somewhat simplified by integration by parts: 
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Substituting in Eq.(22) we obtain  
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Equation (24) is the general solution to the ODE for )(εcE . The integral in it is defined in the domains 

s1/<0 ε≤  and ∞+<<1/ εs . Let us limit our considerations to the first domain. Instead of the indefinite 

integral we may use a definite integral that is a function of its upper limit. Then the expression for )(εcE  
becomes 
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Let us change the variable in the integral from the last equation. We shall assume ξ=1 sx− . Then 
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The last integral cannot be presented by combinations of elementary functions. It can be expressed, 
however, in terms of the integral exponential function  
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that arises in a variety of applications. Substituting with it in Eq.(25) we get 
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This is the final form of the configurational internal energy as obtained from shock-wave experiments. At 
 it coincides with the configurational free energy. Since the contribution of the zero quantum vibrations 

is small it is often neglected and Eq.
0=T

(26) is called the zero Kelvin (cold) isotherm. Its derivation was the 
purpose of the present work. 

The zero quantum vibrations and the thermal vibrations of the crystal lattice are derived within the framework 
of the Debye model in another paper, which is a continuation of this one and will be also presented at this 
conference. 
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